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Nonlinear thermosolutal convection is investigated using the mean-field approxi- 
mation (Herring 1963; Busse 1970). The boundary-layer method for rigid boundaries 
is used by assuming a large Rayleigh number R for different ranges of the diffusivity 
ratio 7 and the solute Rayleigh number Rs. The heat and solute fluxes F and Fs are 
determined for the values of the wavenumbers a, which optimize F.  The a, mode 
(where N denotes the total number of modes) is shown to have a solute-layer thickness 
of order ~ $ 6 , ~  (S,, denoting the temperature-layer thickness in the aN mode), and it is 
also proved that it is only for this mode that the solute concentration affects the 
boundary-Iayer structure. Solutions are possible if K = FsRs/FB < 1. For K 4 1, the 
stabilizing effect of solute is unimportant and there can be infinitely many modes. 
However, as K --f 1 -, N ,  an, F and Fs decrease rapidly and the maximizing con- 
vection is suppressed entirely by the solute concentration. A simple interpretation of 
the model for the diffusive system leads also to the results for the salt-finger system. 

1. Introduction 
Double-diffusive convection is the convective motion of fluids in which there are 

gradients of two properties. The motion depends strongly for its driving mechanism 
on the different diffusive properties associated with the stabilizing and destabilizing 
forces. For the case in which heat and any solute are the properties, the problem has 
been named thermosolutal convection. 

Double-diffusive convection is important in many areas of geophysics, astrophysics 
and engineering, and has been observed in nature. Two examples in oceanography are 
(i) layers where colder fresher water overlies warm salty water, which are found under- 
neath drifting ice islands in the Arctic Ocean (Neal, Neshyba & Denner 1969; Neshyba, 
Neal & Denner 1971), and (ii) layers of hot salty water bounded by diffusive interfaces, 
which are found near the bottom in parts of the Red Sea of various depths (Degens & 
Ross 1969). These are nearly saturated with salts of geothermal origin, including a high 
proportion of heavy metals which are of commercial value. An example in astro- 
physics is the helium-rich core of some stars, in which the fluid is heated from below 
and is transported upwards by double-diffusive convection. For a more detailed 
discussion of double-diffusive phenomena and their applications, the reader is referred 
to Turner (1973, 1974). 

This paper studies nonlinear double-diffusive convection under the so-called mean- 
field approximation of the equations for momentum, heat and solute. Briefly, these 
equations are derived by ignoring the interaction between the fluctuation quantities 
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but retaining the interaction between the mean and the fluctuation quantities. For a 
more detailed discussion of these equations and their derivation, we refer to the papers 
by Herring (1963) and Busse (1970). Previous studies of these equations for the case of 
thermal convection have shown that, for moderate or large values of the Prandtl 
number Pr, as far as the statistical properties of motion are concerned the results 
derived do not differ appreciably from the experimental results based on the original 
equations. 

On the basis of the postulate first proposed by Malkus (1954), we assume that the 
maximized heat transport F is the one realized in the diffusive regime (defined as the 
one in which the energy driving the flow comes from the component having the larger 
diffusivity). For the salt-finger regime (the opposite case), the relevant postulate is that 
the flow fields tend to maximize the solute transport F,. The success of the previous 
studies of thermal convection based on Malkus’ postulate encouraged us to modify this 
postulate for our problem. A discussion of this can be found in the papers by Lindberg 
(1971) and Straus (1972). In  the latter paper it is found, for example, that in the salt- 
finger case the mode which maximizes F, lies within the wave band of the stable modes; 
this suggests a closed relation of the stability of a particular flow to its ability to 
transport salt across the layer. 

The treatment here is for the steady case. Numerical studies by Veronis (1965, 1968) 
and Straus (1972) of the diffusive and salt-finger regimes of thermosolutal convection 
indicate that a steady state can be reached by a convective flow of finite amplitude 
(away from its linear instability regime). Of course, sufficiently strong convective flows 
are time dependent, but the present study aims a t  exploring the properties of nonlinear 
thermosolutal convection in the simpler case of a steady state, which may also be 
considered as an approximation in some sense. 

Since the studies on upper bounds in double-diffusive convection by Lindberg (1971) 
and Straus (1974) are based on the so-called power integrals, which may be derived from 
the mean-field equations alone, we may conclude, as Chan did for thermal convection 
(Chan 1971, henceforth referred to as I), that the optimized quantities of the present 
study (which uses the mean-field equations themselves) are one step closer to their true 
values, at  least for Pr > 1.  

Our study is also the first attempt to apply multi-boundary-layer techniques to 
double-diffusive convection to determine the optimal flow quantities of the maximized 
fields for sufficiently large values of the Rayleigh number R in the diffusive system or 
of the solute Rayleigh number R, in the salt-finger system. This technique was first 
formulated by Busse (1969). In  improving the upper bound on the heat flux, Busse 
considered a sequence of different boundary layers by adjusting the horizontal scale 
from its interior value to its boundary value. The thickness of each boundary layer 
was assumed to be large in comparison with the thickness of the next layer closer to the 
surface, and the convecting component ofthe heat flux was asaumedto be approximately 
equal to the total heat flux (the conducting component was small) in all but the last of 
the boundary layers, where it waa smaller, but still of the same order as the total heat 
flux. Later on, Chan (1971) used Busse’s technique to study turbulent convection at  
infinite Prandtl number and obtained the preferred upper bound on the heat transport. 
Since then, this technique has been used by Busse & Joseph (1972), Gupta & Joseph 
(1973), Chan (1974) and Riahi (1977) to study nonlinear convection. In  all suchstudies, 
a schematic structure for all the modes was con4idered. Also, it was assumed that 
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higher modes have shorter length scales and that coupling among the different modes 
occurs only between the (n+ 1)th and the nth mode in the nth boundary layer. The 
multi-modal regime and details of the solutions of our governing equations ($  2) are 
given in $ 3 .  

Unleas otherwise stated, the basic model treated here is for the diffusive regime. In 
$ 4, a simple modification is made SO that the results can be applied to the salt-fmger 
regime as well. 

2. Governing equations 
We consider an infinite horizontal layer of fluid of depth d bounded above and below 

by two rigid, perfectly conducting planes maintained at  temperatures To and To + AT 
(AT > 0) and at solute concentrations So and So + AS (AS > 0), respectively. The mean- 
field equations are derived from the Boussinesq equations for momentum, heat and 
solute when all nonlinear terms are neglected with the exception of those which enter 
the equations for the horizontally averaged temperature and solute concentration 
(Busse 1970). The non-dimensional steady-state forms of these equations, after 
eliminating the pressure and horizontal velocity components, are 

V4W+RViT-RsV2,S = 0, (1) 

(2) 

(3) 

Here S is the deviation of the solute concentration from its horizontal average, W is 
the vertical component of the velocity vector, T is the deviation of the temperature 
from its horizontal average, the bars denote horizontal averages, the angle brackets 
denote a further vertical average over the whole layer, and Vy = @/ax2 + a2/8y2. Also, 
R = agd3AT/K,v is the Rayleigh number, Rs = ,8gd3AS/K,v is the so-called solute 
Rayleigh number and r = Ks/K,  is the ratio of the diffusivity coefficients Ks and K,, 
of solute and heat respectively, where 01 is the coefficient of thermal expansion, ,8 is the 
fractional change in density due to a change in the solute concentration, v is the 
kinematic viscosity and g is the acceleration due to gravity. 

V2T + (1 -WT +( WT))  W = 0, 

r2V2S + (7 -3% +( WS))  w = 0. 

We shall rescale our dependent variables such that 

w = (FR)-) W ,  8 = (R /F)*T ,  C = (FR)*F@, (4) 

where F = { W T )  and Fs = ( W S )  are the heat and solute fluxes, respectively. The 
governing differential equations are now 

( 5 )  V ~ W  + V2,8 - KV2,C = 0, 

- w e +  I - - ~ o + -  w = 0, F R  (3) 
(7) 

where K = FsRs/FR. (8) 
25-2 



which are derived by multiplying (6) and (7) by 0 and C respectively and taking the 
total average over the whole layer. 

The boundary conditions appropriate to rigid surfaces at z = 0, 1 are 

w = aw/az = 8 = c = 0. (10) 

The usual form of the cellular structure for the dependent variables is assumed, i.e. 

V?#n(z, Y) = -&#n(Z,y), 

for some horizontal wavenumber a,. Functions with different wavenumbers are 
naturally orthogonal, and here are chosen to be orthonormal. This separation of 
variables leads US to the system of nonlinear ordinary differential equations 

2 

(;-a:) wn-a;(8,-KCn) = 0, 

with boundary conditions 

w, = don/dz = 0, = Cn = 0 at z = 0 , l .  (15) 

Equations (12)-( 15) must then be solved subject to (9). We shall obtain the solutions 
by using the multi-boundary-layer method, treating R as a large parameter. 

3. Multi-modal regime 
We refer to I for details on the mathematical analysis of the multi-modal solutions. 

The c a s b  < 1 

Each an mode (n = 1, . . . , N - 1 )  has three regions: the interior, the intermediate layer 
and the inner layer. The aN mode has four regions: the interior, the intermediate layer, 
the thermal layer and the solute layer. The interior of each mode coincides with the 
inner layer of the previous mode. Coupling among the different modes occurs only 
between the nth and the (n - 1)th mode in the (n - 1)th boundary layer. It is assumed 
that 

S,, < S,, < I/aN < SN-1< ... < 8, < l /an < < ... < 6, < l la, as a, + a, 
(16) 
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where l/an and 6, are the thicknesses of the intermediate and inner layers, respectively, 
and SsN and a,, are the thicknesses of the solute and thermal layers of the aN mode, 
respectively. The boundary-layer structures of all but the last mode are found to be 
essentially the same as those for thermal convection alone (I). 

= z/S,-, as the boundary- 
layer variable for the ( n  - 1)th mode. Equation (12) then gives 

In  the interior of the a, mode (n = 1, . . . , N ) ,  we define 

a:@, = 0, - KC,. (17) 

In  the intermediate layer of the a, mode ( n  = 1 7 . .  .) N ) ,  we define 5, = a,z as the 
variable. Since there is no coupling between the modes in this layer and conductive 
terms are not yet important, (13) and (14) give 

WnO, = 1, WnCn = 1. (18) 

We then find from (12) and (18) that 

In  the inner layer of the a, mode ( n  = 1 ) .  ..) N -  l), we define = z/6, as the 
variable. We then find from the governing equations (12)-( 14)) after applying matching 
conditions (matching the solutions to the corresponding solutions in the intermediate 
layer) and a similar procedure to that in I ,  that 

Wn = A n C ,  (20) 

where A ,  = (1 -K)~a,6,2[10g(l/~,6,)]~, (22) 

(23) B, = a ~ + l a ~ b 6 ~ l ~ g  ( 1/a,S,). 

Thus the solutions for the vertical velocity and temperature in the a, modes 
(n = 1, . . . , N - 1 ) are very similar to the corresponding ones in thermal convection (I), 
and the solution for the solute concentration has essentially the same form as that for 
the temperature in these modes. In the temperature layer of the aN mode, we define 
qN = z/6,, as the layer variable. Applying matching conditions, we find from (12)-( 14) 
that 

where 

Pk = (1 -K)~~6~N' , k log ( l /a ,6 , ) ,  A N  = (1 -K)4a,6~N,[log(l/a,6tN)]t. (27) 

In the solute layer of the aN mode, we define the layer variable as sN = Z/6,,. The 
governing equations and matching conditions then give 

wN = E N  c i  (28) 
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where 

"exp(-gkP,t)dt, c -  N - PN -/ol(l-t CN ) 
3EN 

PN is given in (27) and 12, is a constant of order one whose numerical value is not needed 
here. Thus in the aN mode the solutions for velocity and temperature are very similar 
to the corresponding ones in thermal convection in the first three regions and are 
essentially unchanged in the SsN layer. The solute concentration has essentially the 
same form as the temperature in the interior and l / aN layer, is essentially unchanged 
in the StN layer and has a similar form to the temperature in the CsN layer. 

To determine F and F,, we evaluate the expressions (I DO 1 2), ( 1 VC 12), (( 1 - ~ 0 ) ~ )  and 
(( 1 - uC)2)in (9). After use of aformalprocedure to maximize F(1, $5) ,  we then find that 

- 
- 

- & ( I O N -  1)R,~tb!(l -7Q)&1[(1-7Q) (1  +8b:-$(10N-1)b:)+79]-a = 0. (39) 

From (8), (34) and (38) we obtain the condition for the validity of the solutions as 

R,dR-l[( 1 - 7Q) (1  + ib4, - Q( 10N-l) b:) + 791-1 < 1.  (40) 

It turns out that (32)-(40) are valid for all possible ranges of 7. Equations (8), (36), (39) 
and (40) could be further simplified using the condition T < 1.  If we simplify (39) using 
7 < 1, it becomes a quadratic equation for bt with two real and positive roots. To 
maximize F, we use the root which give6 the relative maximum of F. It is easily seen 
that the results are consistent with the thermal convection problem in I for K < 1.  For 
K N 1 and as K -+ 1 in this range, the number of modes, as well as F and Fs, decreases 
rapidly. Using (16) and (32)-(33), we have 

N = (log 10)-1 pog (Q log (( 1 - K )  R))}. (41) 
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As 1 - K -+ 1/R, N becomes finite and approaches zero. Thus for sufficiently small 
I 1 - K - 1/R 1, nonlinear maximizing convection is inhibited entirely by the solute 
concentration. 

The case 7 = O(1) 

It is found that for this case the SsN layer merges with the StN layer. Equations (1 7)-(24), 
(26)-(27) and (32)-(41) are valid here. However, the solution for the solute concentra- 
tion in the temperature layer of the aN mode takes the form 

In particular, for 7 = 1 we find from (39) that b! = 3/(4 x loN- 1) as expected since 
the problem could be reparameterized to be equivalent to a singly diffusive case in 
which bt = 3/(4 x loN- 1) (cf. I). For 7 > 1, G 0 if b: = 3/(4 x 1oN- 1) and G < 0 if 
b: = 3/(4 x 1ON-1- 1). Hence there is always one positive rcot between these two 
values of b:. Similarly, for 7 < 1, there is always one positive root for b: in the interval 
[0,3/(4 x 1oN- l)]. When there is more than one valid positive root, we choose the one 
which gives the relative maximum of P. 

The case 7 9 1 

If 7 % I, then SsN 8 t N .  Equations (17)-(23) and (32)-(40) are valid here. However, 
we have the following solutions in the solute layer after using (12)-(14) and the 
matching conditions: 

WN = ENC;, 0, = EilCg', (431, (44) 

(45) 

where 

Similarly, we obtain the following solutions in the temperature layer: 

CN = ~ N C N / A N ,  (47) 

where oN and A ,  are given by (24) and (27), respectively, and QN is given by (46). The 
boundary-layer structure is now valid if 

7 < [( 1 - K) B]wlo-N. (49) 

Otherwise, the S,, layer merges with the l / aN  layer and the boundary-layer structure 
breaks down. Using the condition 

St, 4 Ss, < l/aN < Siv-I 

we obtain the value of N which maximizes F as 

as R -+ 00, 
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For K < 1, there are infinitely many modes, but for K - 1 and as 1 - K -+ d / R ,  N 
becomes finite and approaches zero. Thus for sufficiently small values of 11 - K- d / R ) ,  
nonlinear maximizing convection is inhibited by the stabilizing effect of solute. 

4. Discussion 
The boundary-layer analysis has shown that, for given R and R,, the fluxes F and Fs 

are continuous functions of 7 .  In  general, solute and temperature have identical inner 
layers in the a, mode (n = 1,  . . . , N - i), but for 7 & 1 or 7 < 1, solute and temperature 
have different inner layers in the a, mode. It is found from (32)-(34) that the relation 
F -  I/& holds for the strongly convective case ( K  < I ) ,  as in thermal convection 
problems at high R .  However, for K - 1, the relation between F and depends also 
on K.  Detailed calculations of F and F, indicate that &, has essentially the unique 
role of fixing and determining F.  By analogy, S,, should have the role of fixing and 
determining Fs in the salt-finger regime. It is noted from (32), (33) and (35) that 
8, (n = 1, . . . , N - 1 )  and &,, depend on R and K and that 7 and R, are not free para- 
meters. However, &,, depends strongly on 7 as well as on R and K.  If 7 - 1, &,, - &, 
and either 7 & 1 or 7 < 1, the solute concentration has a layer distinct from that of 
the temperature. This is as expected since a,, appears whenever the solute conduction 
term in the solute equation becomes important. For example, when 7 < I ,  as we 
approach the boundary z = 0 from the interior the thermal and the solute conduction 
terms become important succes&vely. The latter is o(7) hence &,, < &tN. 

It is clear that a sufficiently small 1 - K stabilizes the flow. As K -+ 1, a,, F ,  F, and 
N approach zero. However, for sufficiently large 7 ( &  I ) ,  N and F, decrease, while F 
and a, remain large until N -+ 0 and the boundary-layer structure breaks down. Of 
course, care must also be exercised here, for the nonlinear regime of our problem is 
valid only asymptotically away from its stability regime. 

The multi-modal analysis has shown that the solute concentration affects the 
boundary-layer structure only in the last mode aN for the range 7 I or 7 < 1.  
However, the rest of the a, modes (n = 1, ..., N - 1)  have a regular structure similar 
to that in the pure thermal convection problem (I). The main purpose of using the 
multi-modal analysis is to determine the proper optimal flow quantities on the basis of 
the mean-field equations for sufficiently large R. The well-known layering problem of 
double-diffusive convection (Turner 1974) is not considered here. The important 
problem of layering has been observed experimentally, but has not yet been solved 
theoretically to a sufficient degree to understand the problem. The conjecture that 
the layering is a higher-mode phenomenon seems reasonable. Our theoretical result 
that only in the aN mode does the solute concentration affect the boundary-layer 
structure for the transport supports such a conjecture. 

Lindberg (1971) considered the upper-bound problem of turbulent thermohaline 
convection for the diffusive regime. Using the upper-bound technique of Howard 
(1963; 1968, unpublished work referred to  by Lindberg), maximizing F subject to the 
so-called power integrals and considering only a single mode, he obtained the 
relationships 

The relation for F is consistent with the earlier work on thermal convection for 

F = 0*14R+( 1 - R,ri%/R)+, F, = FrA-. 
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8, log,,R 

0.01 5 
6 
7 
8 
9 

10 

0.03 5 
6 
7 
8 
9 

10 

0.07 5 
6 
7 
8 
9 

10 

F 
(present) 

7.54 
15.60 
32-10 
65.78 

134.38 
273.85 

7.21 
14.93 
30.73 
62.99 

128.71 
262-32 

6-72 
13.92 
28.68 
58.80 

120.18 
244.99 

F 
(Lindberg) 

10.08 
23-91 
56.70 

134.46 
318.84 
756.10 

8.62 
20.44 
48.48 

114.96 
272.63 
646.51 

5-55 
13.16 
31-21 
74-01 

175.52 
416-21 

FS 
(present) 

0.38 
0.78 
1-61 
3.30 
6.75 

13.76 

0.36 
0.75 
1.54 
3.16 
6.45 

13.14 

0.34 
0.69 
1.43 
2.93 
5.99 

12-22 

FS 
(Lindberg) 

1.24 
2.95 
6.99 

16-58 
39.31 
93.22 

1-06 
2.52 
5.98 

14.17 
33.61 
79.70 

0.68 
1.62 
3.85 
9.12 

21.64 
51.31 

TABLE 1.  Comparison of values of F and B’s from the present study and Lindberg 
(1971) for r = 0.01 and 8, = RsrfR = 0.01, 0.03 and 0.07. 

R,Ti%/R < 1 (Howard 1963, 1968). Lindberg plotted Fvs. R (on a logarithmic scale) 
in his figure 1 for i- = 0.01 and for different values of the stability number S, = R8d/R .  
Since our mean-field equations contain the power integrals used by Lindberg, we 
expect that our upper-bound results are closer to the true upper bounds. By true 
upper bounds we mean the upper bounds on the flow quantities derived by maximizing 
F subject to the full equations of motion, heat and solute. Of course this expectation 
should hold for sufficiently large R and Pr. Table 1 gives a direct comparison between 
the optimal values F and F’ obtained by Lindberg and in present study (for i- = 0.01). 
We have considered the integer values log,,R = 5, . . . , 10 for the three different values 
0.01, 0.03 and 0.07 of the stability number S, = R,T/R. It can be easily seen that the 
single-mode solution of the present study gives better upper bounds throughout the 
ranges of R and 8, considered in table 1. 

The following conclusions, which are all as expected, can be made from table 1. 
(i) The values of F and Ps from the present study are in general smaller than the 

corresponding values from Lindberg’s study. 
(ii) Lindberg’s stability number is larger than that in our study. Thus for given T 

and R, as R, increases Lindberg’s F and Fs approach zero sooner than those from our 
study. This result should not be misinterpreted. The present study and thah of Lindberg 
are supposed to be valid asymptotically. Therefore, for slow convective motion, we 
should not expect to obtain quantitative agreement with what actually happens. 

(iii) Fs is considerably smaller than F.  
(iv) F and Fs increase with R for a given stability number. For (1 - K ) R  - lolo, 

it can easily be shown that the optimal nonlinear convection is generally characterized 
by a double-mode solution. 
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FS FS F 
8, log,oR* (present) (Straus) (present) 

0.01 5 
6 
7 
8 
9 

10 

0.13 

0.63 

5 
6 
7 
8 
9 

10 

7.36 
15.23 
31.34 
64.24 

131.25 
267.48 

5.37 
11.14 
22-97 
47.12 
96.33 

196.44 

9.04 
21.43 
50.83 

120.53 
285.82 
677.78 

6.48 
15.36 
36.43 
86.40 

204.88 
485.84 

0.74 
1.52 
3.13 
6.42 

13.12 
26.75 

0.21 
0.45 
0-92 
1.88 
3.85 
7.86 

5 1.19 1.28 0.02 
6 2.47 3.04 0.03 
7 5.12 7.22 0.07 
8 10.53 17-12 0.15 
9 21.58 40.60 0.31 

10 44.08 96.27 0.63 

TABLE 2. Comparison of values of Fs from the present study and Straus (1974) for 
r = 0.01 and S, = R/R* = 0.01, 0.13 and 0.63. 

Straus (1 972) considered the problem of finite amplitude double-diffusive convection 
in the salt-finger regime. Free boundaries, Pr > 1, r < 1 and constant mean gradients 
of temperature and solute were assumed. Thus for sufficiently small r and large Pr, 
the nonlinearities in the momentum and heat equations could be ignored. The im- 
portant transport quantity was the solute. The motion was two-dimensional, and 
moderate values of R and R* = Rs/r were assumed. He showed, in particular, that the 
wavenumber for which Fs was maximized increased considerably in the double- 
diffusive case (R =+ 0) as R* increased away from its critical stability value Rg. This 
wavenumber was found to be an increasing function of R for a given R*. For R > lo4, 
the solute flux was approximated by 

F S -  - 0.1 lR*@36( 1 - R,Z/R*)136. 

In order to compare the present work with these results, we modify our model for the 
salt-finger regime by interchanging the role of temperature and solute. The equations 
in § 3 are applicable after replacing F,  F,, R, R,, r ,  S, and SsN by F,, F ,  Rs/r, R/r, 1/r, 
SsN and S, respectively. Using ( 3 2 )  and ( 3 4 )  for n = 1 (which is appropriate for the 
comparison with Straus' results) and r < 1, we have 

LY.~ = y( 1 - K )  R*, .251, = (&j7)01 [( 1 - y)/2.2212]1'2 [( 1 - K )  R*]03 [log (( 1 - K )  R*)]0'2, 
where 

K = B/(?R*), = &{(I + 1OR/R*) + [ ( I  + 10R/R*)2+ 104R/R*]o.5}. 

It can be shown that a1 increases with R for a given R* and also increases with R* for 
a given R .  For R* % R, the solute flux satisfies 

P s eRR*033 (logR*)@2. 
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This functional dependence of Fs on R* is close to that of Straus for R* 9 R& Our study 
is based on the maximized nonlinear asymptotic state (R -+ 00)) whereas Straus’ study 
is concerned with small but finite amplitudes for moderate values of R. It is not 
expected that there will be many other similarities between the results of these two 
studies, 

In  a more recent study of the salt-finger regime, Straus (1 974) considered the upper- 
bound problem by using Howard’s (1963) technique. He maximized the solute flux 
subject to the power integrals derived from the solute and momentum equations and 
the linearized heat equation under the assumption that r was sufficiently small. He also 
considered a single-mode solution and obtained 

Fs z= fR*-1RY7 

where f is a function of R*/R only. As for our comparison with Lindberg’s study, 
discussed above, we expect that our upper-bound results (modified for the salt-finger 
regime) are closer to the true upper bounds than those of Straus. Table 2 gives a direct 
comparison between the optimal values of F, obtained here and those of Straus (for 
r = 0.01). These results indicate that F may become significant at  larger R,, and hence 
the assumption used by Straus to ignore P may no longer hold. We consider here 
integer values log,, R* = 5, ...) 10 for the three different values 0.01, 0.13 and 0.63 of 
the stability number S, = R/R*. It can be easily seen that our single-mode solution 
gives better upper bounds throughout the ranges of R* and X, considered in table 2. 

The following conclusions, which are all as expected, can be made from table 2. 
(i) Our values of F, are considerably smaller than the corresponding values from 

(ii) F is considerably smaller than F,. 
(iii) Fs and 6 increase with R* for a given S,. 

Straus’ study. 

The author would like to thank Professor C. Y .  Chan and the referees for their 
comments. This work was partially supported by the Office of Naval Research, 
Contract No. N O 0 0  14-67-A-0235-008. 

R E F E R E N C E S  

BUSSE, F. H. 1969 J .  Fluid Mech. 37, 457. 
BUSSE, F. H. 1970 Max-Planck-Inst. Phys. Astrophys. Rep. MPI-PAE/Astro 31. 
BUSSE, F. H. & JOSEPH, D. D. 1972 J .  Fluid Mech. 54, 521. 
CHAN, S. K. 1971 Stud. A&. Math. 50, 13. 
CHAN, S. K. 1974 J .  Fluid Mech. 64, 477. 
DEGENS, E. T. & Ross, D .  A. (eds.) 1969 Hot Brines and Recent Heavy Metal Deposits in the 

GUPTA, V. P. & JOSEPH, D. D .  1973 J .  Fluid Mech. 57, 491. 
HERRING, J. R. 1963 J .  Atmos. Sci. 20, 325. 
HOWARD, L. N. 1963 .I. Fluid Mech. 17, 405. 
LINDBERG, W. R. 1971 J .  Phys. Ocean. 1, 187. 
MALKUS, W. V. R. 1954 Proc. Roy. Soc. A 225, 196. 
NEAL, V. T., NESHYBA, S. & DENNER, W. 1969 Science 166, 373. 
NESHYBA, S., NEAL, V. T. & DENNER, W. 1971 J .  Geophys. Res. 76, 8117. 
RIAEI, N. 1977 3. Fluid Mech. 81, 523. 

Red Sea. Springer. 



748 N .  Riahi 

STRAWS, 5. 1972 J .  Fluid Mech. 56, 353. 
STRAUS, 5 .  1974 Phys. Fluids 17, 520. 
TURNER, J. S. 1973 Buoyancy Efsects in Fluids. Cambridge University Press. 
TURNER, J. S. 1974 Ann. Rev. Fluid Mech. 6 ,  37. 
VERONIS, G. 1965 J .  Mar. Res. 23, 1. 
VEROXIS, G. 1968 J. Fluid Mech. 34, 315. 


